
OTIC FILL Technical Report

C M U /S E I- 9 0 -T R -1 9
ESD-90-TR-220

_Carnegie-Mellon University
*Software Engineering Institute

0.

An Analysis ofIInput/Output Paradigms
for Real-Time Systems

Mark H. Klein4 , Thom as Ralya

. July 1990

II

1 '*

//

* R:! 4 4 4 4

APMW ~r v* 4b.
*--

1 -/-

, , ,.. ,, L X

7
iu i L u w 0U -- _ f 9 \

"he foiioe eq Staternerl of assi 'anne S -0-" than a stalenalf Pree to conga5 lf f te federal law. T , a sincere slaleireilt isv the 11 ve1sSN to iscrc Trhat all

n'eodie are dulded n te d eryl y wficr makes Carnege Meler) an ecn place Crnegie Minio I-lr oi IrClde pene *1101 relard It ac .'rC In, -841.11141
ex ,1 ralrd,nsro religion creed ancestry belie ago. veean 11.- dlor , or ientl or,

Carriege Mei , jnrnerSil, does im! dsmrriafe and CariregJie Mello I Llnivereliy is reoired not t, cJiSnruncnale vi adruisons and efilorrlln 'i t he has, il race
Color nat-ira orgin sex or naridi,1al n oolatvon of Title VI of If 'e C vel Rigfil Act or 196~4 Tile ix olfuri Educa! anal Airnierls or 1972 anid S;ecjor' 504 or Inn
Finaitiilauoin Ari of 1973 or oliver fleeal, sile. of local laws oi 1ec51.oe orders In vdfioii Carnege Mellon ones novl disnrrnirate ,i adr'vssovns a C-into1 -nent on
?ihe Oass nf rr'igiorr Creed arresl ry, belief age eran siatis or se-at ofienialion in 01lal~on or aly federal stale or Cr.a la)s Or clll vta .tnOders Inquiries concern
nCO dP-l-iafidf of Ills p01 , sliosidl be ditrif In fun Prilsersf Crrnetlic MeliiiIjuern 50001 F~r o rbe I,-' ;;, 203 9 tirli -1

Vice Pre'sigeel iIr Furoil-nel C-regie Melln Cn,ierst 50050 Forbeps Avenne Ptsbinrth PA P11,1 tereptinn (41 21 10- 2006

Technical Report
CMU/SEI-90-TR-19

ESD-90-TR-220
July 1990

An Analysis
of Input/Output Paradigms

for Real-Time Systems

Mark H. Klein
Real-Time Scheduling in Ada Project

Thomas Ralya
IBM Federal Sector Division

Approved for public release.

Distribution unlimited.

Software Engineering Institute
Carnegie Mellon University

Pittsburgh, Pennsylvania 15213

This technical report was prepared for the

SEI Joint Program Office
ESD/AVS
Hanscom AFB, MA 01731

T-e ;;,,s and findings in this report should not be construed as an official
DoD position. It is published in the interest of scientific and technical
information exchange.

Review and Approval

This report has been reviewed and is approved for publication.

FOR THE COMMANDER

Karl H. Shingler
SEI Joint Program Office

This work is sponsored by the U.S. Department of Defense.

Copyright © 1990 by Carnegie Mellon University.

This document is available through the Defense Technical Information Center DTIC provides access to and transfer of
scientific and technical information for DoD personnel, CoO contractors and potential contractors, and other U.S. Government
agency personnel and their contractors To obtain a copy, please contact DTIC directly: Defense Technical Information
Center, Attn FDRA. Cameron Station. Alexandria, VA 22304-6145.

Copies of this document are also available through the National Technical Information Service. For information on ordering,
please contact NTIS directly National Technical Information Service, U S. Department of Commerce, Springfield. VA 22161.

Use of any trademarks in this report is not intended in any way to infringe on the rights of the trademark holder.

Table of Contents
1. Introduction 1

1.1. An Analytical Framework 2
1.2. Considerations for Input/Output 2

2. Processing Model 5
2.1. Input/Output Paradigms 5
2.2 Models of Device Interactions 7
2.3. Notation and Terminology 8

3. Review of Rate Monotonic Theory 11
3.1. Basic Results of Rate Monotonic Scheduling 11
3.2. Schedulability Models 15
3.3. Example Problem 18

4. Input/Output Paradigms 21
4.1. Synchronous I/O 21

4.1.1. Preemptible Service 21
4.1.2. Considerations for Non-Preemptibility 24
4.1.3. Considerations for Idle Time 25

4.2. Asynchronous I/O 31
4.2.1. Single-Request Devices 31
4.2.2. Considerations for Multi-Request Devices 36
4.2.3. Considerations for Emulating Multi-Request Devices 37
4.2.4. Pipelining of 1/O Requests -, 38

5. Summary and Conclusion 41

Acknowledgements 43

Appendix A. Implementation Paradigm for Multi-Request Devices 45

Appendix B. Figures for Example Problem -esi - 51

References VI IS GRA&I 53
DTIC TAB
Unannounced []
Justification __

Distribution/

Availability Codes

A-vail and / or
Det Special

I','l
CMU/SEI-90-TR-1 9i

II CMU/SEI-90-TR-1 9

List of Figures

Figure 2-1: General Model for a Process 5
Figure 2-2: Input Stage in Detail 6
Figure 3-1: Effects of Idle Time 16
Figure 3-2: Deferred Execution Effect 17

Figure 3-3: Process/Resource Relationships in the Example Problem 19
Figure 4-1: Synchronous Service with No Idle Time 22
Figure 4-2: Synchronous Service with Idle Time 26
Figure 4-3: Deferred Execution 29
Figure 4-4: Synchronous Idle Time 32
Figure 4-5: Asynchronous Idle Time 32
Figure 4-6: Optimized Asynchronous Idle Time 33
Figure 4-7: Synchronous I/O: Client 34
Figure 4-8: Asynchronous I/O: Client 3"
Figure 4-9: Optimized Asynchronous I/O: Client 35
Figure 4-10: Asynchronous 1/C: Interface 36
Figure 4-11: Asynchronous I/O: Monitor 37
Figure 4-12: Pipelining 38
Figure 4-13: Latency Due to Pipelining 39
Figure 4-14: Asynchronous 1/O with Pipelining: Client 40
Figure A-i: Multi-Request Interface 45
Figure A-2: Multi-Request Procedural Interface 46
Figure A-3: Multi-Request Monitor for Requesting I/O 46
Figure A-4: Multi-Request Completion_ID Management 48
Figure A-5: Interrupt Service Routine 49
Figure B-i: Process/Resource Relationships in the Example Problem 51

CMU/SEI-90-TR-19

iv CMU/SEI-90-TR- 1

List of Tables

Table 3-1: Process/Resource Relalonships in the Example Problem 19
Table B-i: Process/Resource Relationships in the Example Problem 51

CMU/SEI-90-TR-19

An Analysis
of Input/Output Paradigms

for Real-Time Systems

Abstract: The correctness of a real-time system with hard deadline requirements
depends both on the logical correctness and on the timing correctness of the sys-
tem. The principles of rate monotonic scheduling have proven to be very useful in
providing a framework for designing, analyzing, and modifying the timing and con-
currency aspects of real-time systems. This paper illustrates how to build a math-
ematical model of the schedulability of a real-time system, taking into considera-
tion such factors as preemption, synchronization, non-preemptibility, interrupts.
and orocess idle time. In particular, this paper illustrates how these principles can
be applied to input'output interfaces (e.g., to devices or local area networks) to
predict the timing behavior of various design alternatives.

1. Introduction
The primary characteristic that distinguishes real-time systems from non-real-time systems
is the importance of time. The correctness of a rgaL-time system depends not cnly upon its
logical correctness but also its timing correctnes&-[1 1; -1-5: 'System complexity tends to com-
promise correctness unless there are techniques and methods for managing the complexity.
Basic software engineering principles such as abstraction, encapsulation, and information
hiding form the basis of iiethods and techniques that are used to manage logical comp!exity
113]. Rate monotonic scheduling theory offers a set of engineering principes for managirg

timing complexity, [111.

A real-time program may be comprised of many processes (i.e.. threads of execution) and
the timing ru;ationshlps between processes may be complex. The responsibility for im-
plementing a set of processes may be held by one individual or, more likely, by many in-
dividuals possibly in different organizations. Further, the set of processes may change dur-
ing the course of the development effort. Ultimately, the set of processes must be inte-
grated to form a program that satisfies a set of real-time performance requirements.

A c,. ntral focus of the Real-Time Scheduling in Ada (RTSIA) Project at the Software Engi-
neering Institute (SEI) is to explore the use of rate monotonic scheduling theory for manag-
ing timing complexity and for understanding the timing behavior of realistic real-time prob-
lems. Input/output (I/O) processing plays an important role in real-time systems and, at the
same time, poses several interesting problems for rate monotonic scheduling theory. The
purpose of this report is to illustrate how to apply rate monotonic principles systematically to
commonly used I/O paradigms.

CMU/SEI-90-TR-19

1.1. An Analytical Framework
The "oun of rate monotonic scheduling was first introduced by Liu and Layiand in 1973 [5].
The .&rm rate monotonic derives from a method of assigning priorities to a set of processes:
assigning priorities as a monotonic function of the rate of a (periodic) process. Given this
simple rule for assigning priorities, rate monotonic scheduling theory provides a simple
inequality--comparing total processor utilization to a theoretically determined bound-that
serves as a sufficient condition to ensure that all processes will complete their work by the
end of their periods.

This fundamental theoretical result is the underpinning of a fairly comprehensive theory for
analyzing the timing behavior and designing the concurrency structure of a real-time system.
Liu and Layland's original result applied only to a set of non interacting periodic processes.
Subsequent work oxtended the applicability of rate monotonic scheduling to processes that
synchronize to share data [10], to systems with aperiodic processing [4, 14], and to systems
with mode change requirements [12]. As a result, the theory can be used to build a math
ematical model that describes the ability of a system to meet its timing requiremerts. We
refer to this as a schedulabity model.

1.2. Considerations for Input/Output
One of the benefits of devolping a schedulability model is that it requires a precise charac-
terization of the execution timing behavior of a set of processes in terms of the parameters
needed by the model. For example, to build a schedulability model that includes the effects
of sharing data between processes, we must understand the circumstances under which
lower priority processes can block higher priority processes by requiring exclusive access to
the data. In order to build schedulability models for 1 0 paradigms we must precise~y
characterize input output processing, explore relevant theoretical results, and then in-
crementally use the theory to understand how to model various aspects of different I 0
paradigms.

In Chapter 2 we define a general model of processing that basically divides a process's
work into three stages: input, processing, and output. We also define a classification of 10
devices. Two parameters are used to differentiate between device types: whether or not
the device can handle more than one client process at a time and whether or not the device
requires that the CPU participate in data movement. In Section 2.3 we develop notation that
will be useful in performing analyses in the remainder of the paper. The theoretical results
relevant to this paper are then summarized in Chapter 3.

Chapter 4 forms the heart of the paper. In this section we demonstrate how to apply the
principles of rate monotonic scheduling theory to the general model of processing outlined
earlier in the paper. First, we consider synchronous 'o paradigms. When synchronous I/O
paradigms are used, control is not returned to the calling process until the operation is com-
plete. Therefore, a process that uses synchronous I/0 will perform one I/0 operation at a

2 CMU SEI-90-TR-19

time: I/0 operations do not overlap in time. On the other hand, asynchronous 10 operations
may overlap since the calling process may start other work concurrent with the initiated i,0.
We will explore the schedulability tradeoffs between these two paradigms by comparing
their schedulability models. We will also explore other issues that impact the timing be-
havior of a set of processes including non-preemptible sections, interrupt processing, and
process idle time (depending on the device, a process may be inactive during an I'O
operation). Throughout Chapter 4 we develop a schedulability analysis of each situation
that is presented.

CMU/SEI-90-TR-19 3

4 CMU/SEI.90..TR19

2. Processing Model
The context of the discussion in this paper is real-time systems with hard deadlines. A hard
deadline is a deadline that must be met; the software is considered to be malfunctioning if
such a deadline is missed. We confine our discussion to uni-processor systems that employ
logical concurrency. The term process wi!l denote a unit of concurrency. We will further
restrict our attention to periodic processes.1 By periodir we mean that a process is initiated
at regular intervals (periods) and has a deadline that is one period after it is initiated.

2.1. Input/Output Paradigms

We assume a general processing model that endlessly cycles through the following three
stages as shown in Figure 2-1:

1. Input: Read data from one or more sources of input, which may be devices
and/or data in main memory.

2. Processing: Compute output values, which are functions of all of the
gathered input values.

3. Output: Write the results of the computations to one or more sinks, which may
be devices and/or main memory.

The input and output resources (devices and/or memory storage) may be shared between
processes in the system, and in that case will require mutually exclusive access.

Input Processing Output i

Figure 2-1: General Model for a Process

The input (output) stage of a process is simply a sequence of individual input (output) opera-
tions. We model an individual input (output) operation as occurring in three phases as il-
lustrated in Figure 2-2.2

1. Start I/O (St): The time interval in which device interactions necessary to start
an I/O operation are performed.

2. I/O Service (Srv): The time inter, a1 in which the data is actually manipulated
and/or moved.

'It may seem overly restrictive to focus on periodic processing. However, much of the analysis is applicable to
aperiodic processing. See [14] for a description of how to use the sporadic server algorithm to guarantee hard
deadlines for aperiodic processes.

2Note that the ideas presented in this report are not limited to this particular model of processing. Arbitrary
sequences of input operations, processing, and output operations can also be analyzed using the principles of
rate monotonic scaduling theory.

CMU/SEI-90-TR-19 5

3. I/O Completion (Cpt): The time interval which starts when the device signals
that I/O has completed and ends when control is returned to the initiating proc-
ess.

When considering shared data in main memory as the resource, the I/O service phase is the

only relevant phase. In this case, this phase reflects the amount of time it takes to perform

an operation on the shared data. When considering devices, the I/O service phase reflects
the amount of time it takes to move data between main memory and another destination.

Input Stage

Input Input Input
Operation 1 Operation 2 Operation 3

77v SrV.Zv St

Figure 2-2: Input Stage in Detail

We will consider variations of two common I/O paradigms: synchronous and asynchro-
nous. When a synchronous I/O operation is performed, control is returned to the calling
process only after the entire I/O operation is complete. A process that employs synchro-
nous I/O completes all phases of an I/O operation before it starts the next I/O operation.
When asynchronous I/O is performed, control is returned to the calling process immediately
after the operation is started, enabling the calling process to perform other work concurrent
with the I/O. In particular, the asynchronous paradigms perform the Start-IO phase of sev-
eral distinct I/O operations, allowing the I/O-service phase of several I/O operations to
proceed concurrently. The characteristics of the I/O device and the software interface to the
device are factors to be considered when choosing between synchronous and asynchro-
nous paradigms.

We frequently refer to a process that makes I/O requests as the client process. We will
assume that I/O capabilities are provided to the client via a software interface. The syntactic
details of the I/O interface are not of concern to us; instead, we are interested in the seman-
tics of the interaction between the client and the device. The following issues have an im-
pact upon the analysis of various paradigms:

* Non-preemptible sections. Is any portion of the I/O operation non-
preemptible?

" Non-interruptible sections. Are interrupts disabled for any portion of the I/O
operation?

6 CMU/SEI-90-TR-19

e Idle time. Is the client process inactive3 for any portion of the I/0 operation?

e Mutual exclusion. Does the I/O operation provide mutually exclusive access to
the device?

* Interrupts. Is the device operating in an interrupt-driven mode or in a polling
mode?

The properties of the I/O service will have an impact on the client's ability to satisfy its timing
constraints and may impact other processes as well. Characteristics of the device naturally
determine the nature of the client's interaction with the device. Thus, it is important to un-
derstand certain aspects of a device's behavior in order to understand the timing behavior of
an 1/0 process.

2.2. Models of Device Interactions

To be clear about the assumptions that we are making concerning device behavior, several
classes of devices are described below.

" CPU Dependent. This class of device requires the CPU to be active in moving
the data. The Motorola Z8530 [61 serial interface, commonly used on Motorola
single board computers, falls into this class.

" Single Request. This class of device does not require the CPU to be active in
moving the data. The I/O device operates physically concurrent with the CPU.
Devices in this class only support one outstanding I/O request at a time. Most
direct memory access (DMA) controllers fall into this class.

* Multiple Request. This class of device does not require the CPU for data
movement and also operates physically concurrent with the CPU. However,
devices in this class support multiple outstanding I/O requests. Some local
area network adapters fit into this class.

Performing an I/O operation using a device in any of the above classes involves the use of
many resources. Cognizance of and planning for resource contention is important in deter-
mining whether or not a process will be able to meet its deadline. For example, before a
process can perform an I/O operation it must acquire the CPU. The process may then need
to acquire several I/O buffers. If memory is a scarce resource, this may cause the process
to wait. The I/O device itself may be a shared resource. If the device is being used by a
lower priority process, a higher priority process may be delayed. A common backplane bus
may be used to facilitate communication between the CPU and devices. Bus arbitration
protocols may have an impact on a process's ability to meet its deadline. For example, bus
cycles may be lost to DMA devices in the presence of I/O activity. This effectively reduces
the number of cycles available to a process that also needs access to the bus and con-
sequently introduces delays in the process's I/O stages. (See [8] for a comprehensive dis-
cussion of "cycle stealing.") For multiple-request devices, scheduling of requests within the

3An idling (or inactive) process in this context is waiting for an I/O service to be completed. Lower priority
tasks have an opportunity to execute when the client is inactive.

CMU/SEI-90-TR-19 7

device itself is also an issue. Additionally, multiple-request devices are likely to have a limit
for the number of outstanding I/O requests. Another factor when considering the timing be-
havior of processes performing 1/O is the interrupt control logic of the processor. In this
paper we focus on issues concerning the use of devices and memory-resident data by one
or more processes. We assume that there is no contention for the other resources men-
tioned above (i.e., I/O buffers are readily available, cycle stealing is negligible, and multi-
request devices support a large number of outstanding requests).

Section 2.3 introduces some notation and terminology.

2.3. Notation and Terminology

In general, we assume that there are n processes on a uni-processor. One or more of these
processes may be a process that performs I/O as described in the previous section. Any
given process iwill be denoted by t i.

The term schedulability means the ability of a process or a set of processes to meet dead-
lines. WP explore later how various characteristics of a client process's interactions with

different types of resources affect its schedulability.

There are several parameters of a process that we refer to many times in later sections. C
and Ti represent the execution time and period, respectively, associated with process t,

Assume that the numbering of the processes is such that the following relationship holds:

T <T-,< ... <T n

The CPU utilization of process ti is the ratio of a process's execution time to its period. The
CPU utilization of a set of processes is the sum of the utilizations of the individual proc-
esses.

C1 C2 C
CPU Utilization of a Set of Processes - + - + + -

TI T 2 Tn
Let Res(-y be the set of resources that process 'ri uses (which includes both devices and
shared data) and let Dev(-) be the subset of those resources that are devices. The follow-
ing expression summarizes this relationship:

Dev(Ti) g Res(ci)

Devices may be used in the input and/or output stages. Therefore, let the set of devices
that are used for input and output by process tri be denoted by InpDev(t i) and OutDev(t,)

respectively.4 The following expression summarizes this relationship:

InpDev(Ti) u 0utDev(Ti) = Dev(Tr)

4Note that an individual device may be used for both input and output. In this case the device would be a
member of both InpDev(T) and OutDev(t).

8 CMU/SEI-90-TR-19

As previously stated, the execution time of process ri is represented by Ci. There are also

subcomponents of execution time that are of interest. Let re Res(i) denote a resource that
is used by -ci. The amount of time that process t i spends performing an I/O operation with
resource r is Ci,r Additionally, Cip is the amount of time that "ti spends in its processing

stage. Therefore, we have the following relationship:5

C i = Ci,p - I Ci,r
r E kes(T.)

This expression states that the total execution time for Ti is the sum of the execution times
associated with performing I/O with all resources used by t, plus the execution time associ-
ated with the Ti's processing stage. Note that process rT may use the same resource more
than once per period and may use it for input and output. If it is necessary to distinguish
between multiple uses of the same resource, we will let Cirk denote the kth use of resource
rby process Tiduring any given period. Otherwise, the third subscript will be omitted.

In the previous section, we subdivided a client process's interaction with a device into
phases: start I/O, I/O service, and I/O completion. Let d E Dev(r i) denote a device that is
used by T1.

* St(Cidk) denotes the amount of time process Ti spends in the start I/O phase of
an individual I/O operation using device d.

" Srv(Cidk) denotes the amount of time process T, spends in the I/O service
phase of an individual I/O operation using device d.

* Cpt(Cid.k) denotes the amount of time process T, spends in the I/0 completion
phase of an individual I/O operation using device d.

When certain paradigms are used, the client process will not actually be executing during
the service time phase; execution will be suspended and the client will be inactive while the
device is performing I/O. We will refer to this time as idle or inactive time. If a process is
inactive, it will be inactive during the I/O service phase of I/O operations. Therefore, if an
individual I/O operation is not inactive, the execution time associated with the operation is:

Ci,dk = St(Ci,dk) + Srv(Ci,dk) + Cpt(Ci,dk)

On the other hand, if an individual I/O operation is inactive during its I/O service phase then:

Ci,dk = St(Ci,d}-) + CPt(Ci,d)

Finally, let LowRes() denote the set of resources that are used by processes with priorities
less than Ti's priority and HiRes(T) denote the set of resources used by processes that have
a priority which is greater than or equal to Ti's priority.

5We will assume that the amount of computation that a process performs between individual I/O operations is
negligible,

CMU/SEI-90-TR-19 9

10 CMU/SEI-90-TR-1 9

3. Review of Rate Monotonic Theory
The analysis of the schedulability of various i/o paradigms will be performed by using a
theory of real-time systoms which is based on rate monotonic scheduling theory. Rate
monotonic scheduling theory provides analytical mechanisms for understanding and predict-
ing the execution timing behavior of real-time systems. The basic theory, introduced in a
seminal paper written by Liu and Layland [5], gives us a rule for assigning priorities to peri-
odic processes and a formula for determining if a set of periodic processes will meet all of
their deadlines. A large body of work resulting from the Advanced Real-Time Technology 6

and the Real-Time Scheduling in Ada7 Projects at Carnegie Mellon University extends this
basic result so that the theory addresses process synchronization, aperiodic processing,
mode change, and other practical issues that contribute to the complexity of the timing be-
havior of real-time systems [3, 4, 10, 14]. This section reviews some of the relevant results
that are used later in the paper.

3.1. Basic Results of Rate Monotonic Scheduling
Our examination of the schedulability of various I/O paradigms addresses tne tollowing two

questions about a process that performs I/O:

1. How do other processes affect the schedulability of the process?

2. How does the process affect the schedulability of other processes?

These questions serve as a starting point to introduce rate monotonic theory.

First, note that we assume a priority-based preemptive scheduling discipline.8 Initially, con-
sider a set of independent periodic processes, where independent means that the proc-
esses do not have synchronization requirements and periodic means the processes are in-
itiated at regular periods and have deadlines at the end of the period. Under these assump-
tions, only higher priority processes can affect the schedulability of a particular process.
Higher priority processes delay a process's completion time by preempting it. This is

reflected in the following theorem [5].
Theorem 1: The rate monotonic algorithm assumes priority-based preemptive
scheduling, where a process's priority is based on its period; processes with
shorter periods (i.e., higher frequencies) are assigned higher priorities. A set of n
independent periodic processes scheduled by the rate monotonic algorithm will
always meet their deadlines, for all task phasings, if

C, Cn
+ + <_U(n)=n(2 /n-1)IT,

6A project in Carnegie Mellon University's School of Computer Science.

7A project in Carnegie Mellon University's Software Engineering Institute.

8Rate monotonic principles have been used to analyze non-preemptive scheduling disciplines as well.

CMU/SEI-90-TR-19 11

Basically, if the utilization of the process set is less than a theoretically determined bound,

then the set of processes is guaranteed to meet all (... deadlines.

Corollary 2: Given a set of n independent periodic processes scheduled by the
rate monotonic algorithm, a particular process, tk, k5 _ n, will always meet its

deadline if:
CI Ck
-+ + +-<_U(k) =k(21/k-1)
T 1 Tk

From this result we can see that the only factors that determine the schedulability of process

- are the vt , zatk n of higher priority tasks and the utilization of the process -rk itself.

As indicated above, there is a set of assumptions that are prerequisites for this result (see

* Process switching is instantaneous.

* Processes account for all execution time (i.e., the operating system does not
usurp the CPU to perform functions such as time management, memory man-
agement, or I/O).

" Process interactions are not allowed.
" Processes become ready to execute precisely at the beginning of their periods.

* Process deadlines are always the start of the next period.

" Processes with shorter periods are assigned higher priorities; the criticality of
processes is not considered.

The following set of results allows us to relax these assumptions and thus apply the
scheduling theory to a wide class of realistic real-time problems, such as the analysis of
various I/0 paradigms.

Corollary 3: Let worst-case context switching time between processes be
denoted by Cs . Also, define C, = Ci+2Cs . A set of n independent periodic proc-
esses with worst-case context switching time of C. that is scheduled by the rate
monotonic algorithm will always meet its deadlines, for all task phasings, if:

CI C- + +. +_' n2 11 1)
T 1 Tn

The execution time of process "ci is effectively being inflated to include context switching

overhead. As described in [1], when a process preempts a lower priority process, the ex-
ecution state of the lower priority process is saved and the execution state of the higher
priority process is established. When the higher priority process completes its processing

and relinquishes the CPU to a lower priority process, its execution state is saved and the
state of the lower priority process is reestablished. The context switches for (1) preemption
of the lower priority process and subsequent (2) resumption of its execution account for the
20 added to the execution time of the preempting process.

The discussion up to this point assumes that a process's execution is always consistent with
its rate monotonic priority. Consider the following example:

12 CMU/SEI-90-TR- 19

Example 1: Two processes have been assigned rate monotonic priorities with
orocess t1: the highest priority. Process 'T2 starts to execute and calls a system
service, a portion of which involves a non-preemptible section of code. Immedi-
ately after this call, T1 becomes ready to execute but cannot preempt T2 while it is
in this non-preemptible section. Thus, the higher priority process has to wait until
the system service completes before it can preempt the lower priority process.

This example illustrates one way in which a process that has been assigned a higher rate-
monotonic priority can be delayed by a lower priority process. This delay time is known as
priority inversion or blocking. Interrupts represent another potential source of blocking. The

following result generalizes the previous results to include the effects of blocking.

Corollary 4: Given a set of n independent periodic processes scheduled by the
rate monotonic algorithm, let Bk be the worst-case total amount of blocking that
process Tk can incur during any period. Process Tk will always meet its deadline if:

C1 C' BI k-lk0+ .. . --- +_ <k(2 k - -)
T1 Tk Tk

The following lemma is a generalization of the above corollary.

Lemma 5: Given a set of n independent periodic processes scheduled by the rate
monotonic algorithm, let Bi be the worst-case total amount of blocking that proc-
ess -c can incur during any period. The set of processes will meet all deadlines for
all phasings if:

C1 B1- + -<1(211 -l- 1) and

T1 T 1

C1 C, B,
4-- "+ -<2(2""-1) and

T 1 T-, T2

C1 C, CG Bk
--+ -+ .+-+-+ <k(2 /k-1) andT1 T, Tk Tk

c; _

C1 C,
+ "+ ... + + <n(21/ -1)
T T1 T

The inequalities explicitly show how blocking affects the schedulability of a set of processes
and why it is desirable to minimize blocking.

Process synchronization is another common source of blocking. When more than one proc-

ess requires mutualhy exclusive access to a resource, processes must synchronize. If a
lower priority process has locked a resource and is then preempted by a higher priority proc-
ess which executes until it needs to access the resource but is then forced to wait, the
higher priority process is blocked. The priority ceiling protocol (PCP), first described in [10],

is one of a class of inheritance protocols; PCP reduces the effects of blocking and prevents

mutual deadlock.

CMU/SEI-90-TR-19 13

The PCP employs two concepts: priority inheritance and the priority ceiling. When a high
priority process is waiting for a lower priority process to relinquish access to a shared
resource, priority inheritance comes into play. Priority inheritance prohibits a medium prior-
ity process from prolonging the actual amount of time a resource is locked by a lower priority
process. Without priority inheritance, a medium priority process can preempt the lower pri-
ority critical section and prolong the period of blocking. To prevent this, priority inheritance
allows the lower priority process to inherit the blocked process's higher priority for the dura-
tion of the critical section. Thus, priority inheritance prevents the medium priority process
from preempting the critical section, which is now executing at a high priority. The basic
priority inheritance protocol is described in [10]. Priority inheritance leads to the following
result [10]:

Theorem 6: Under the basic priority inheritance protocol, if a process Sh:-es m
resources with lower priority processes, then it can be blocked at most m times
per period due to process synchronization (provided that the process does not
become inactive).

It is not hard to imagine that a high priority process requires data from several resources
that are all locked at the time it preempts and tries to acquire the data. The low priority
process locks a resource, is then preempted by a slightly higher priority process that locks
another resource, and so on. The high priority process will execute until it needs data from
the first resource and then it will be blocked. The blocking process will inherit the blocked
process's priority and, after its critical section, relinquish the resource. The high priority
process will use the resource and then be forced to wait for access to the second resource
that it needs and so on. The PCP reduces this blocking time [1 0].

Theorem 7: Under the priority ceiling protocol, a process which shares resources
with lower priority processes can be blocked only once per period (provided it
does not become inactive when it is not accessing a resource) for the duration of
a single critical section.

One can get an intuitive understanding of this property by oxamining the sources of blocking
for any process, i i. Process tci can be blocked by any lower priority process with which it
shares a resource (this is referred to as direct blocking). It can also be blocked by any lower
priority process that shares a resource with a higher priority process. The lower priority
process can inherit a higher priority when it is blocking a higher priority process, thereby
delaying process "ti (this is known as push-through blocking). We will call the set of proc-
esses that can block process ri its blocking set. The PCP allows only one process in :i's
blocking set to be locking resources at any given time. Therefore, when 'ri preempts a lower
priority process it can only be blocked once due to process synchronization. The concept of
a priority ceiling is used to accomplish this.

Associated with every semaphore or monitor that protects a shared resource is an attribute
known as the priority ceiling. The priority ceiling is the highest priority at which a critical
section associated with the resource can be executed, which is also the priority of the
highest priority process that uses the resource. The priority ceiling rule of the priority ceiling
protocol prohibits a process from locking a resource unless the process's priority is strictly

14 CMU/SEI-90-TR-19

greater than the priority ceiling of all semaphores locked by other processes. The blocking
set of any process is the set of processes that use semaphores (or monitors) that have a
priority ceiling greater than or equal to the process's priority. Effectively, the priority ceiling
rule allows only one process in the blocking set to have locks at any given time.

Lemma 8: One can emulate the priority ceiling protocol by ensuring that critical
sections are executed at the ceiling priority.

If a critical section is executed (without becoming inactive) at the priority of the priority ceil-
ing of the protected resource, then no other processes in the blocking set will be permitted
to preempt the critical section. This effectively emulates the priority ceiling rule.

Another phenomenon that affects the schedulability of a process is idle time. Clearly when
a process becomes inactive this has a direct impact on the schedulability of this process
(see Figure 3-1). Another term is needed in the scheduling inequality for this process to
account for the idle time. A much less obvious effect is that idle time can also reduce the
schedulability of lower priority processes. This is known as the deferred execution effect.
since execution is deferred for the duration of the idle time. This is discussed in [9. 4].
When a higher priority process's execution is deferred, there is a window of time where a
lower priority process experiences more preemption than is normally permitted under rate
monotonic scheduling. One can imagine that all of the higher priority processs execution s
deferred so that tne process completes its execution at 6he end of its period and then imme-
diately resumes execution at the beginning of its next period (see Figure 3-2).

Lemma 9: The deferred execution effect caused by a higher priority process can
be accounted for by adding a blocking term to the inequalities of lower priority
processes. This term is the minimum between the duration of idle time and the
amount of execution time that has been deferred [9].

Consider, for example, Figure 3-2(a). Without idle time, process T2 has 5 units of execution
time available that it can use without missing a deadline. In this case, the minimum between
the duration of idle time (4 units) and the amount of execution time that was deferred (1 unit)
is 1 unit. Figure 3-2(a) illustrates that process 12 has only 4 units of available execution time
(a schedulability penalty of 1 unit) when the higher priority process idles. Figure 3-2(b) also
illustrates a deferred execution penalty. In this case, the penalty is equal to the duration of
execution, whereas in Figure 3-2(a) the penalty is equal to the amount of execution time that
is deferred.

3.2. Schedulability Models

The following set of inequalities can be thought of as a mathematical model of the timing
behavior of a set of n periodic processes.

CMUISEI-90-TR-19 15

Without Idle Time

2 I I

With Idle Time

T2

QfI=Idle time

Figure 3-1: Effects of Idle Time

C. .)
+ - -) +

CI C, C '

-- + -+ + + + _ n(21", - I

T I T -1 I n T "

16 CMU/SEI-90-TR-19

(A) T

T 1 h Idle time= 0
T 2

t 2 .1 2 3 4 51 I Unitsavailable=5

-- T 1 10

1 r h h I Idle time = 4
T2 Units available = 4

T'2 1234] Penalty=1

(B) T

T1 h i ITi hTi I Idle time = 0
T2

t 2 1 2 34 I Units available = 4

1 I - h-- I Idle time = 2
-T 2 -* Units available = 2

T 2 2 Penalty = 2

Figure 3-2: Deferred Execution Effect

X, is a term that contains all of the process-specific effects for process t,, which include
blocking time (due to synchronization, interrupts, and other sources), idle time, and the
deferred execution penalty. It is a model in the sense that it predicts the schedulability of
the set of processes given a set of parameters, namely execution times, periods, and
process-specific effects. Building a schedulability model for a set of processes necessitates
understanding how to address the two questions at the beginning of Section 3.1 for each
process, which allows one to build the set of inequalities one process at a time.

CMU/SEI-90-TR-19 17

3.3. Example Problem

In order to illustrate the application of rate monotonic theory to several IO paradigms, we
use an example set of five processes. A data-flow diagram is shown in Figure 3-3. Devices
are denoted as di and data stores as si. Table 3-1 shows the resources that are used by
each process. 9 The example as a whole involves five different devices and four different
data stores. Recall that we assume that the numbering of the processes is such that T1 has
the shortest period and consequently has been assigned the highest priority. In general, the
priorty of process ri is higher than the priority of process Ti+1- Assume that the priority ceil-
ing protocol is in effect unless otherwise stated.

I. Process T1 does not use any resources. Even though it is an independent
periodic process, there are circumstances under which its ability to meet its
deadline is affected by lower priority processes.

2. Process T2 gathers data first from a device (dl) and then from a data store
(s.), processes the data, and then writes the results to s,.

3. Process -3 gathers data from the three resources: sj, d2, and then d3. It then
performs calculations on the data and writes results to s2 and sends output to
device d4. Note that this process shares data stores with processes T2 and c5

and shares a device with process T4 .
4. Process -4 gathers data from two data stores that are not shared with any

other processes in this example and writes to device d4 , which it shares with
'13 .

5. Process C5 gathers data from two data stores that are shared with higher pri-
ority processes and se':.d: output to device d5 , which is dedicated to this proc-
ess.

'"Sin'e it will be useful to be able to look at the figure and the table while reading the examples later in the
piper, the table and the figure have been duplicated in Appendix B.

18 CMU/SEI-90-TR-19

0
S_.2@.0. processes

- data flow

D device

data store

Figure 3-3: Process/Resource Relationships in the Example Problem

dl cd2 d3 d4 d5 s, S2 S 3 S4

:2 X X

T3 x X X X

T4 x x x
1T5 x XX

Table 3-1: Process/Resource Relationships in the Example Problem

CMU/SEI-90-TR-19 19

La un lmll m

CM-6U(SEI..90.TR. 19

4. Input/Output Paradigms
This chapter shows how to apply the theoretical results of the previous section to a set of
processes, a subset of which perform I/O. Additionally, we hope to illustrate how the theory
can be used to elucidate the tradeoffs between using various I/O paradigms. Basically, we
will present variations of synchronous and asynchronous I/O paradigms.

When considering the variety of cases presented in this section, we always focus on a
single period of a single I/O process, tCk. We then strive to answer two fundamental ques-
tions:

1. How do other processes affect the schedulability of the performing I/O process
Tk

?

2. How does the performing I/O process Zk affect the schedulability of other proc-
esses?

In effect, answering these two questions is like specifying a schedulability interface for proc-
ess zk: importing the information needed to determine its schedulability and exporting the
information needed to determine the schedulability of oher processes. This approach facili-
tates a separation of concerns, allowing us to focus our attention on a single process as we
vary different aspects of its execution.

4.1. Synchronous I/0

4.1 .1. Preemptible Service
In this first case the client process (i.e., the process making I/0 requests) employs synchro-
nous I/0 (i.e., the client process waits for completion of the I/O operation). Moreover, the
client process does not experience idle time (i.e., lower priority processes are not given an
opportunity to execute) and the process is completely preemptible. Each resource is locked
for the entire duration of the I/0 request. Figure 4-1 illustrates an implementation
paradigm 1 0 for this type of I/0 service using Ada pseudo-code.

10By implementation paradigm we mean a specification for the characteristics of an implementation but not the
implementation per se.

CMU/SEI-90-TR-19 21

package 10 Services is
procedure Read(<Buffer>);
procedure Write(<Buffer>);

end IOServices;

package body IO Services is
procedure Read(<Buffer>) is
begin

IOMonitor.Read(<Buffer>);
end Read;

procedure Write(<Buffer>) is
begin

10 Monitor.Write(<Buffer>);
end Write;

end 10_Services;

task body IO Monitor is
begin

loop
select
accept Read(<Buffer>) do

Start 10;
Poll device for 1:0 Completion;
I/O Completion;

end Read;
or

accept Write(<Buffer>) do
Start IO;
Poll device for ,O Completion,
I/O Completion;

end Write;
end select;

end loop;
end IOMonitor;

Figure 4-1: Synchronous Service with No Idle Time

22 CMU/SEI-90-TR-19

One situation where this model applies is when the CPU polls the device to determine when
the device has completed an I/O request (i.e., completed its I/O service phase). This is
illustrated in Figure 4-1. The three phases are explicitly shown for the Read and Write

operations. Requisite buffer manipulation and device control are implicit in the Start-lO and
I/O-completion phases of the Read and Write operations. This example assumes a
single-request device where both I/O operations poll to determine when the device has
finished moving data from an external source to processor memory or vice versa. This I/O
paradigm is also applicable in the case where the device is CPU dependent (i.e., the CPU is
involved in the movement of data), as described in Section 2.2. Under these circumstances,
a request to acquire data from a device has the same schedulability properties as a request
to read/write memory-resident shared data. In the previous section we explained that the
following generic inequality is used to model the schedulability of a particular proces:

C1 Ck-1 Ck
-+ ... + +_+ __<k(21k_l)
Ti Tk- Tk Tk k

Assuming that the priority ceiling protocol has been implemented or is being emulated fcr a::
processes, then

Xk = Bk = mcax(,r I] = k+1, ... n; r e DB(Tk) u PTB(Tk))

where
DB(Tk) = Res(Tk) r) LowRes(T)

PTB(Tk) = { r I r iRes(Tk) A r eHiRes(k) A r eLowRes(tk)

This means that the process-specific (Xk) term in the inequality is solely comprised of block-
ing time. Blocking time may be direct blocking and/or push-through blocking (see page 14).
The set DB(-k) is the set of resources that may cause direct blocking and PTB('rk) is the set
of resources that may cause push-through blocking.

CMU/SEI-90-TR-19 23

Example 2: Referring to the example problem introduced in Section 3.3, we will
focus on process [3. Recall that the general set of inequalities that models this
set of processes is:

C1 X1
-- + -< 1(2111-1) andTi Ti

C' Gi X"
--+ "+ "<2(2f-1) and

T1 T2 T2c'+ci c;ix3
- " +-+--<3(2 3 - 1) and

T1 T2 T3 T 3

C' C2~ C3 C4 _ 4 <4~I1 n-+"-+--+--<4__ 114 1) and
T1 T-, T3 T4 T4

_+ - + -+ _+ -_+ - <5(2l,/5-1)
T 1 T, T3 T4 T 5 T 5

In this example, processes are affected only by preemption and blocking due to
shared resources. Process t 3 shares resources with both lower and higher prior-
ity processes.

Res(t 3) r- LowRes(-r3) = d.4, s 1 , s2 }

Res('c3) n HiRes('c3) = {s1

Since we are assuming that the PCP is in effect, t 3 can be blocked for at most the
duration of a single critical section of a lower priority process. Therefore, the
blocking incurred by t 3 is:

B 3 =rnax(C 4 ,d4 , C5,sl, C5 ,s2)
The contribution of t 3 to the blocking of higher priority processes is C3,sl; process

"3's contribution must be combined with other sources of blocking. The entire set
of blocking terms for this example is:

X 1 = B = 0
X, = B2 = rax(C 3 ,slP C 5,s I
X3 = B3 = rnax(C4,d4, C5 ,sI, C5,s2,
X4 = B4 = faL(C5 ,s P C 5 ,s2)
X 5 = B 5 = 0

Notice that the source of blocking for process T4 is push-through blocking.

4.1.2. Considerations for Non-Preemptibility
Non-preemptible sections can result In blocking. Consider the case where I/O service is
not only performed in a mutually exclusive manner, but is also non-preemptible. Perhaps
the service is non-preemptible because of device requirements or merely because the I/O
service was implemented in this manner. All other assumptions remain the same. As we

24 CMU/SEI-90-TR-19

illustrated in Section 3.1, non-preemptible sections represent a source of blocking to higher
priority tasks. The following example illustrates the analysis for this case.

Example 3: Assume that I/O service for all devices is non-preemptible. Once
again, we first consider 3 .

In addition to the blocking term in the previous example there is another source of
blocking for 'r3 ; T5 accesses d5 in a non-preemptible section. Non-preemptibility is
similar, in effect, to PCP. When a client is accessing a resource in a non-
preemptible section, higher priority processes are prevented from executing and
thus are prevented from locking other resources. The same effect would be
achievea if Cie priority ceiling associated with the resource was set to be the
highest priority in the system (independent of the clients that use the resource).1

Of course, this causes blocking not caused by PCP; however, PCP's "blocked at
most once" property is preserved. Therefore, the blocking term for process T3 is:

B 3 = zax(ma.(C4,d4, C 5 ,sl, C 5 ,-2), C 5 , 15))

Since -3 accesses devices d2, d3, and d4 in a non-preemptible manner, it be-
comes a source of blocking to higher priority processes. Its contribution to block-
ing resulting from non-preemptibility is max(C3, 2 , C3 ,,3, C 3.d4). The entire set of
blocking terms for this example becomes:

B l m= ax(C2,dl, C 3 ,12, C 3 ,d3, C3,d4, C4,d4, C5,d5)

B-, = ,na.(Max(C3,sl, C5,sl), C3 ,d2, C3,,3, C 3 ,d4 , C4,d4, C5,d5

B 3 = IlLt(mt".(C 4 ,d4, C 5 ,s, C 5 ,s2), C 5 ,, 5))

B4 = IfLL(ina:(C5 ,s C5 , 2), C5.d5)
B- = 0

Notice that in two of the blocking terms nested max functions were used. This is
to emphasize the different sources of blocking and the composition of those differ-
ent sources of blocking.

4.1.3. Considerations for Idle Time
The single-request and multiple-request devices (described in Section 2.2) allow for physical
concurrency between the CPU and the device. This allows the client to relinquish the CPU
to lower priority processes while awaiting I/O completion. Recall that this period of time
when the client is not executing is referred to as idle time or inactive time. This section
addresses the schedulability ramifications of process idle time.

Assume that I/O completion is signalled by a device interrupt which terminates the period of
client inactivity and eventually results in control being returned to the client. Additionally,

assume that the CPU is non-preemptible from the time the interrupt occurs until control is

"Actually, the effect is identical to using PCP emulation but setting the server's priority to be higher than any
clients in the system. (Recall, when PCP emulation is used the critical section is executed at a priority which is
equal to the ,-,iny -'eiling of the semaphore I

CMU/SEI-90-TR-19 25

returned to the client process (i.e., the client is non-preemptible during the I/O completion
phase of the i/O request). Figure 4-2 illustrates an implementation paradigm for the
10 Monitor for this case. Notice that this monitor waits for an interrupt to signal the comple-

tion of the I/O service phase, whereas the monitor illustrated in Figure 4-1 polls the device.
Now consider the schedulability characteristics of this type of interaction with a device.

task body IOMonitor is
begin

loop
select

accept Read(<Buffer>) do
Start 10;
Wait for I/0 Interrupt;
I/O Completion;

end Read;
or

accept Write(<Buffer>) do
Start 1O;
Wait for I/0 Interrupt;
I/O Completion;

end Write;
end select:

end loop;
end IOMonitor;

Figure 4-2: Synchronous Service with Idle Time

Idle time will have a direct impact on the client process's ability to meet its deadline.
The idle time must be accounted for in the process's inequality in the same manner as
blocking. Additionally, each time the client process becomes idle and then resumes execu-
tion, it incurs two additional context switches (2Cs), which must be accounted for.

Example 4: Assume that all of the devices that 'T3 uses (i.e., d2, d3, and d4) are
single-request devices and that the I/0 service for these devices is synchronous.
Also assume that the client process becomes idle for the duration of the I/O ser-
vice phase (i.e., interrupts are used to signal I/O completion).

The components of execution for the input, processing, and output stages are:

(C3,sl + C3,d 2 +2 Cs + C3 ,d3 +2Cs) + C3 ,p + (C3,s2 + C3 ,d4+2Cs) + 2Cs

There are threc devices which cause process idle time and potentially two context
switches for each. Thus, the execution time component of the inequality is

(C;+6Cs). The inequality for this process is:

C, C (C3 + 6C s) X 3
+2+ +-<3(2 3- 1)

T1 T 2 T3 T3
Note that Xk includes components from the I/O service phase of each device that
process Tr3 uses. In the previous example, this component of time was included in
the execution time term. (See page 9 for difference between the components of

26 CMU/SEI-90-TR-19

execution time for I/0 operations with and without idle time.) Basically, the net
effect of idle time on the schedulability of process 'T3 is additional context switch-
ing overhead.

Idle time has an effect on the blocking time components of higher priority processes.
If lower priority processes become idle and use interrupts as means of signalling I/0 com-
pletion, then the period of non-preemptibility that starts with the interrupt is treated as block-
ing time for higher priority processes.

Idle time may also affect the blocking properties of the process that experiences
inactivity. The priority ceiling protocol's "blocked at most once" property is preserved if a
process is idle while a resource is locked. When the resource is locked, another process
must have a priority that is strictly greater than the priority ceiling of all other locked
resources in order to lock any resource. Consequently, lower priority processes will not be
allowed to lock other resources while the client is idle.' 2

Idle time also affects the properties of PCP emulation (discussed in Section 3.1). Since
clients use one resource at a time and then release it, there is no hold and wait condition
and consequently deadlock is not a problem [7]. However, inactivity can allow queues to
form. If queues are FIFO rather than prioritized, blocking time for higher priority processes
will be increased.

Example 5: This example is the same as the previous one except that in addition
to devices d2, d3, and d4 , the I/O service to device d5 also involves idle time.
Once again we are faced with two problems in calculating the blocking term for
t3 : finding the various sources of blocking and determining the right function for
combining the various forms of blocking.

121f, however, the client has not locked a resource when it becomes idle, the client is no longer protected by
the priority ceiling protocol and a lower priority process may lock a resource that the inactive client will eventually
need. In this case, the client may be blocked once for each time it idles, in addition to being blocked once before
it idles. This situation may arise when the process is using a dedicated single-request device. Since the device
is dedicated, mutual exclusion is not needed and thus the PCP does not come into play. One might entertain
protecting the resource with a semaphore or monitor so that the PCP could be used to avc ','i ,tle blocking.

CMU/SEI-90-TR-19 27

One source of blocking to t 3 is due to resource sharing:

ma(C4,d4, C5 ,sl, C 5 ,s2)

Another source of blocking is due to the interrupt associated with device d.:

Cpt(C5 ,d5)

Recall that Cpt(CSd5) is the non-preemptible duration of the I/O-completion phase
of process t.5 's I/O operation using device d5 . In order for this interrupt to cause
blocking, d5 must be locked by -r5 when 'r3 preempts. Since the use of the syn-
chronous paradigm implies that only one device is locked by any given client at
one time, we know that s, and S2 are not locked when d5 is locked. For this
reason, simply adding together the above two blocking terms is overly pessimistic.
For example, if we set the blocking term to be:

B3 = ma(C 5 .sl, C5 ,s2, C4,d4) + Cpt(C 5 ,d5)

and
?ax(C 4 ,14. C 5 ,sl. C 5 ,s2)C5,sl

then

B 3 = C5,s I+ Cpt(C5 1 5)

However, since s, and d5 cannot be simultaneously locked, the blocking contribu-
tions are not additive.

On the other hand, consider the following case: T5 locks d5 ; t5 is then preempted
by T4, which locks d4 ; d4 is in turn preempted by T3. At this point, d5 completes,
resulting in an interrupt and consequently blocking time for 3. When t3 resumes
it attempts to lock d4 and is blocked again. The blocking term for tnis scenario is:

Cpt(Cs, 5) + C4.d4

Therefore, the blocking term for T3 is:

B 3 z '?a'(ma((C4 ,d4, C5 ,sl, C5 ,s2), (Cpt(C 5 ,d5) + C4,d4))

which can be reduced to:

B 3 = max(C 5 ,sl, C 5 ,s2, (Cpt(C5,d) + C4,d4))

The point of the exercise is to explicate the factors that contribute to blocking and
to show how to reason about combining the various factors.

Idle time can also affect lower priority processes. The idle time of a higher priority proc-

ess offers a lower priority process an opportunity to execute. However, additional context-
switching overhead due to this inactivity is one cost that weighs against the benefit of less

preemption time. A more subtle cost is the cost due to deferred execution. The deferred

execution effect due to the inactivity of the higher priority process must be accounted for in
the schedulability inequality of lower priority processes.

28 CMU/SEI-90-TR-19

Example 6: In this example let device d1 be the only resource that involves idle
time. The purpose of this example is to analyze the tradeoffs in determining the
schedulable utilization of process T3 when a higher priority process becomes in-
active.

Process tU2 is the only process that uses device d1 . The inequality for process :2
has to account for idle time and hence X2 will include a term Srv(C 2 ,dl) . The
inequality for process Tr3 does not have to include Srv(C 2 ,dl) as preemption time,
but additional context switching must be accounted for, and the effects of deferred
execution must be included. The inequality that models this situation is:

C + - +C) C_ B 3+D+ ' +-+ -<3(21! - l)T] T- T3_ T3

D is the additional term that is needed to model the deferred execution effect due
to process C2 . B3 is blocking due to lower priority processes. Recall from Section
3.1 that the deferred execution effect can be modeled by adding a term to lower
priority processes to account for the effect. The term is the minimum of the
amount of execution time that is deferred and the duration of the period of in-
activity. Referring to Figure 4-3, it can be seen that the term in this case is:

D = ,nin(Srv(C,,,) , (C, + 2C) - (St(C, + 2C))

which reduces to

D = min(Srv(C,,,), C,-S(C2 ,))

I" T2

S2,s ,1 2 ,p C 2 ,s l , 2 S

Srv(C2, dl)

St(C2, dl) Cpt(C2, dl)

Figure 4-3: Deferred Execution

Now we will assess the schedulability benefits of process t[2 's idle time for proc-
ess T3 .

CMU/SEI-90-TR-19 29

First assume that the idle time is relatively short compared to the deferred execu-
tion time:

,nin(Sr(C',,). C'-St(C"dl)) = Srv(C-" d)

Without idle time (i.e., if polling is used), the inequality for process T3 is:

C1 + .C + S-v+ B, ! 3 2 1 B

T1 T3 T3

With idle time, the inequality for process t 3 is:

C C: + 2C) (' B 3 +Sr(C2 1 1)
-- 3 . -3 - 1)T1 T, T3 T,

From the above inequalities we can see that if the following inequality is satisfied.
then the schedulable utilization of process :3 has improved due to idle time of
process '2.

Srv(C,,1 g1) - 2C SIrvlCJl I

Basically the inequality tells us that if context switching is small relative to idle
time, then idle time is beneficial to the lower priority process.

Now assume that the idle time is large relative to the execution time that is
deferred:

,,,,,,(.S- ., . C 2.,l, = C:-St(C 2 .1l

The following inequality governs the tradeoff in this case:

SrV(C, - "C C -St(Cidl)I

T, T31

The inequality tells us that if idle time is significantly greater than the deferred
execution time (i.e., idle time minus context switching overhead is greater than
deferred execution time), then idling is beneficial to the lower priority process. In
both cases, analysis confirms intuition.

30 CMU/SEI-90-TR-19

4.2. Asynchronous I/O

The previous sections analyze the effects of non-preemptibility and idle time. In particular.
the circumstances under which lower priority processes could increase their schedulable
utilization by taking advantage of idle time in higher priority processes are examined. The
essence of this section is to explore how a process can take advantage of its own idle time
to increase its schedulable utilization. We first investigate asynchronous '/0 in the context
of devices that can only handle one I/O request at a time, the so-called single-request de-
vices.

4.2.1. Single-Request Devices
Total process idle time can be reduced by allowing the process to perform other work
while the I/O service is in progress, thus effectively increasing its own schedulable
utilization. Consider Figures 4-4 and 4-5 for an illustration of the differences between syn-
chronous and asynchronous idle time. First notice that in the synchronous case, all idle
times contribute in an additive manner to execution time. The idle time component in the
process 7,'s inequality is:

/JIle Tim N" SrvoCkP)

Consider the asynchronous paradigm (Figure 4-5). Idle time for the input stage cannot be
any longer than the maximum idle time for all of the input operations. The same is true for
the output stage. Therefore, the worst-case idle time for the asynchronous paradigm is:

It,,r0 s-Cae Id/c Time = mz(Srv Ckr I I r E +pLpc'(l; I +
iPnxI(Srv C.'r) I r E OwuDev(k))

Idle time can be further reduced by placing ,0 requests involving CPU-dependent devices
and, or shared data after I, requests that involve idle time. The idea is to attain maximal
CPU utilization during idle time.

Also notice that the asynchronous paradigm offers the opportunity to totally eliminate idle
time from the output stage. Effectively, the I/O-completion phase of all output operations
can be viewed as a check for successful I/O completion. This could easily be checked at
the beginning of the following period as shown in Figure 4-6. An implementation paradigm
for the client process performing synchronous I/O is shown in Figure 4-7 and for the two
asynchronous alternatives in Figures 4-8 and 4-9.

CMU/SEI-90-TR-19 31

L

111112113 P 1011021 03

[TTJ] ~Input

Wo Output
J f Idle time

St Srv CPt 7P Processing

Figure 4-4: Synchronous Idle Time

Input Processing Output

St Srv Cpt

Figure 4-5: Asynchronous Idle Time

32 CMU/SEI-90-TR-19

Cpt for
previous Input Processing Output

period

St Srv Cpt
Figure 4-6: Optimized Asynchronous Idle Time

While asynchronous 1/0 paradigms allow total idle time to be reduced (when com-
pared with synchronous paradigms), the blocking that the process causes to higher
priority processes due to interrupts is worse for the asynchronous paradigms than
for the synchronous paradigms. Consider the synchronous case for a moment. A lower
priority process employing synchronous 1/O will only have one outstanding 1/O request at
any given time. A higher priority procuss suffers blocking when it preempts the lower priority
process while an 1/O request is outstanding, since the device interrupts the CPU to signal
the completion of the lower priority I/O operation while the higher priority process is still ex-
ecuting. Therefore, in the synchronous case the blocking contribution for higher priority
processes due to interrupts related to process Uk'S 1/O is:

MaUx(Cpt(Ck~) I d e Devtrk))
In the asynchronous case there can bg multiple outstanding I/O requests when a higher
priority process preempts. The worst case occurs when the lower priority process is
preempted after it has issued all of its requests for input or all of it-. requests for output. The
equivalent blocking contribution for higher priorhty processes in this case is:

_'V _~ tC ,J I _ t(1,,d

CMU/SEI-90-TR-1 9 33

task body Client is
begin

IO Services Device a.Read; -- Input Stage
10_Services Device b.Read;
10_ServicesDevice c.Read;

ProcessingStage; -- Processing Stage

10 ServicesDevice l.Write; -- Output Stage
io ServicesDevice 2.Write;
IO0ServicesDevice_3.Write;

end Client;

Figure 4-7: Synchronous 1/0: Client

task body Client is
begin

10 ServicesDevicea.AsynRead; -- Input Stage
10Services_Device b.AsynRea,4 ;
10_ServicesDevice_c.Asyn Read;

10 Services Device _.Wait Read(<Buffer>);

10_Services Deviceb.Wait Read(<Buffer>);
10ServicesDevice_a.Wait Read(<Buffer>);

Processing_Stage; -- Processing Stage

-- Output Stage

10 Services Device_l.Asyn_Write(<Buffer>);
I0_ServicesDevice_2.AsynWrite(<Buffer>);
IOServicesDevice_3.Asyn Write(<Buffer>);

10 Services Device 3.Wait Write;
10ServicesDevice_2.Wait Write;
IOServices Device IWait Write;

end Client;

Figure 4-8: Asynchronous I/O: Client

Implementation paradigms for asynchronous I/O require careful consideration to en-
sure that the benefits of the priority ceiling protocol are preserved. 13 Given the imple-
mentation paradigms for client processes for the synchronous and asynchronous cases as
shown Figures 4-7 and 4-8 respectively, we now turn to the associated implementation
paradigms for the monitor processes.

'31n general, the implementation paradigms are illustrated using an Ada-like syntax but are not meant to be
Ada-specific. However, in this section we couch our discussion specifically in terms of Ada, since the application
of the priority ceiling protocol to Ada has already been defined in [2].

34 CMU/SEI-90-TR-19

task body Client is
begin

10_Services Device_3.WaitWrite; -- Finish Output Stage
I0_ServicesDevice_2.Wait Write; -- from previous period
IOServices_Devicel.WaitWrite;

10_ServicesDevicea.Asyn_Read; -- Input Stage
I0_Service s_Deviceb.Asyn_Read;
IOServices_Devicec.Asyn_Read;

IOServicesDevice_c.WaitRead(<Buffer>);
10_Services Device b.WaitRead(<Buffer>);
IOServicesDevice a.WaitRead(<Buffer>);

Processing_Stage; -- Processing Stage

-- Output Stage
i0ServicesDevicel.AsynWrite(<Buffer>);
10 ServicesDevice_2.Asyn_Write(<Buffer>);
10 Services Device_3.Asyn_Write(<Buffer>);

end Client;

Figure 4-9: Optimized Asynchronous I/O: Client

Recall that we are assuming the devices are single-request devices anc4 Lnus can handle
only one outstanding request. Hence, the devices require mutually exclusive access. The

_X cn itor s in Figures 4-1 and 4-2 enforce mutually exclusive access in the synchronous
case. Notice that the PCP rules, as applied to monitor processes [2], will ensure the
"blocked at most once property" in this case.

Asynchronous I/O requires an implementation paradigm that facilitates mutual exclusion in a
manner similar to that shown via the synchronous monitor (Figure 4-2), but must allow the
client process to start the I/O operation and then have control returned to perform other
work. One option for an implementation paradigm is shown in Figures 4-10 and 4-1 1. How-
ever, this structure violates Ada coding restrictions for server tasks outlined in [2]. The
coding restrictions developed in [2] were motivated by the need to preserve the desirable
properties of the priority ceiling protocol, which was originally defined in terms of rules for
locking binary semaphores [10]. In order to use asynchronous I/O and continue to benefit
from the desirable properties of the PCP, the asynchronous I/O services must be imple-
mented in a manner that is consistent with the PCP. One approach is to incorporate a
semaphore into the asynchronous I/0 services. Specifically, implement the AsynRead
(Asyn_Write) so that P operation is performed in addition to the Start I/0 request and
implement WaitRead (WaitWrite) SO that a V operation is performed during I/O Com-
pletion. The semaphore operations that are embedded in the I/O services must conform to
the semaphore locking rules of the PCP.

CMU/SEI-90-TR-19 35

package 0ServicesDevice n is
procedure Asyn_ Read;
procedure Wait Read(<Buffer>);

procedure AsynWrite(<Buffer>);
procedure Wait-Write;

end IOServices;

package body 10 Services Device n is
procedure AsynRead is-
begin

10_onitor.Asyn_Read;
end AsynRead;

procedure WaitRead(<Buffer>) ii
begin

10 Monitor.WaitRead(<Buffer>);
end WaitRead;

procedure AsynWrite(<Buffer>) is
begin

IO Monitor.Write(<Buffer>);
end AsynWrite;

procedure Wait Write is
begin

10 Monitor.WaitWrite;
end WaitWrite;

end 10 Services;

Figure 4-10: Asynchronous I/0: Interface

4.2.2. Considerations for Multi-Request Devices
There are several noteworthy considerations for devices that support multiple outstanding
requests. One consideration is that the implementation paradigm for supporting this type of
device is slightly more complicated. This is discussed Appendix A.

It is also important to know the mechanism the device uses to manage multiple
requests. A simple model of this type of device involves a simple processor and a queue
manager. The device queues requests from the CPU and works to empty the queue. The
issue of concern is the queuing discipline. If the queue is a FIFO queue, low priority re-
quests may be serviced before higher priority requests and consequently the device has
introduced another source of blocking. FIFO queues in devices can be a serious bottleneck
for high priority tasks.

36 CMU/SEI-90-TR-19

task body 10 Monitor is
begin

loopselect

accept Read do

Start IO;
end Read;

Wait for I/'0 Interrupt;

accept Wait Read(<Buffer>) do
Data movement or pointer manipulation;

end Wait-Read;

or

accept Write(<Buffer>) do
Data movement or pointer manipulation;
Start 10;

end Write;

Wait for h/O Interrupt;

accept Wait-Write;

end select;
end loop;

end IO Monitor;

Figure 4-11: Asynchronous I/O: Monitor

4.2.3. Considerations for Emulating Multi-Request Devices
Blocking time associated with accessing a single-request device can be reduced by
emulating a multi-request device. Consider the client process illustrated in Figure 4-8 and
the associated monitor process in Figure 4-11. Once this client process issues its request to
start the first read operation using device a, the device is locked until both the data has been
moved and the client process issues a call to WaitRead for device a. The worst-case
blocking time for a higher priority client process that shares the device is the duration of time
from the Asyn_Read to the WaitRead. However, the device may have completed data
movement before the lower priority client gets to the point in its processing where it can
execute the call to wait Read. If this is the case, the higher priority client is blocked longer
than necessary. This points out a fundamental difference between using devices and
memoy-resident shared resources. When using devices that operate physically concurrent
with the CPU, the resource may be ready for the next client before the current client is ready
for the results of the I/O operation. Emulating a multi-request device by creating a queue of
I/O requests allows the high priority client to use the single-request device as soon as data
movement is completed.

In this case, an application can submit multiple asynchronous requests for I/O without
having to lock the device (i.e., only having to the lock the device for the duration of the

CMU/SEI-90-TR-19 37

request, as opposed to the duration of the I/0 service). This abstraction also requires a
queue of outstanding I/0 requests. However, in this case the queue is managed by the
executive. This raises two "-nport "nt ccrcems:

e Once again, a FIFO queuing discipline will result in blocking.
e Even if a priority queue is used, queue management may result in blocking if it

is performed within the executive at effectively a higher priority.

4.2.4. Pipelining of I/O Requests
Pipelining is used to take maximal advantage of idle time at the cost of introducing
latency in the results. The sequential paradigms require that the input stage complete
before the processing stage commences and that the processing stage complete before the
output stage commences. Pipelining allows these stages to overlap. For example, the
processing stage can take advantage of idle time in the input stage.

In order to allow the processing stage to capitalize on the idle time in the input stage, proc-
essing must commence before input is completed. This means that the processing per-
formed during a given period must use input collected during the previous period, as shown
in Figure 4-12. This is known as double-buffered input.

DEW
]i St Srv Cpt

D P~ocessing
lnpp.tu

Cpt for Output
previous

period

Figure 4-12: Pipelining

38 CMU/SEI-90.TR-19

A consequence of this paradigm is latency. The output generated during any given period
reflects the input from one period before it. This is illustrated in Figure 4-13. The input from
period i-1, denoted as (Inp i-i), is processed in period i, denoted as (Proc i-1), and is output
during oeriod i, denoted as (Out i-i). Notice that even thcugh the dfat? ,' ;z I .stput is
essentially one period old, new output is generated every period. Therefore (if the latency
can be tolerated), this paradigm is suitable for generating periodic output.

Period Period
i-

I 11InpI~rclOut IiIpIrc u

I - ' + + I i 1 i' 1

Figure 4-13: Latency Due to Pipelining

CMU/SEI-90oTR-19 39

This paradigm effectively reduces the deferred execution effects of service time to zero; all
of the idle time occurs after all of the non-idle time. If one avoids waiting for I/O completions
at the end of the period and instead checks for completion at the beginning of the following
period, this paradigm avoids the contpyt sw;tching penalty tiat other paradigms pay for idle
time. This is illustrated in the sample client in Figure 4-14. Since there is no idle time, there
also is no deferred execution penalty for lower priority tasks.

task body Client is
begin
-- Assuming this is period i:

-- Gather data from AsynRead initiated in period i-i
10 ServicesDevicea.WaitRead(<Inp i-l>);
IOServices Device b.WaitRead(<Inp i-l>);
IOServicesDevice c.WaitRead(<Inp i-l>);

-- Confirm completion of Asyn Write initiated in period i-1
1O_Services Device_3.Wait Write;

10_ServicesDevice_2.WaitWrite;
IOServicesDevice l.Wait Write;

Initiate AsynRead for period i
10 _Services _Device a.AsynRead;
10_ServicesDeviceb.Asyn_Read;

10 Services_Devicec.AsynRead;

-- Initiate processing using data gather above
ProcessingStage(<Inp I-I>, <Out I-1>);

Initiate AsynWrite using data from above processing
10_ServicesDevice 1.Asyn_Write(<Out I-1>);
10_ServicesDevice_2.Asyn_Write(<Out I-1>);
10_ServicesDevice_3.Asyn_Write(<Out I-1>);

end Client;

Figure 4-14: Asynchronous I/0 with Pipelining: Client

This paradigm also results in a blocking penalty that is due to interrupts. Recall that
the blocking time for the asynchronous-sequential paradigm was:

"rit14 I 1CPt(Ck,l)d - I 1CPt(Ck,,,))

r - InpDev(,) I r E Ou1Dev(r,) I

The blocking penalty for higher priority tasks in this case is:

I XCPt(CkrI)d
r c Device(Tr) 1

40 CMU(SEI-90-TR-19

5. Summary and Conclusion
This report illustrt.s how thp ,rinrcinipq nf ritp mnnrtoniC Scheduing theory can be
methodically applied to variations of synchronous and asynchronous I/O paradigms. We
have varied the characteristics of synchronous I/O operations to explore:

1. Effects of non-preemptibility. Non-preemptibility is a source of blocking.
When calculating worst-case blocking effects due to non-preemptibility, one
can use a "blocked at most once" ruiu like that used for the priority ceiling
protocol.

2. Effects of idle time. Idle time potentially affects the schedulabilitv of the id-
ling process as well as higher and lower priority processes. The scheduling
inequality for the process itself must include a term to account for this gap in
execution and additional context switching. Higher priority processes will be
affected by interrupts that signal I/O completion. Interrupts on behalf of an
idling process represent blocking time to higher priority processes. Lower pri-
ority processes must account for thp deferred execution effect. A lower prior-
ity process benefits from a higher priority process's idle time if one of the fol-
lowing conditions is true:

" Idle time is small relative to the execution time that is deferred and con-
text switching time is small relative to the idle time.

" Idle time is significantly larger than the execution time that is deferred.

Asynchronous I/O was then introduced as a means of reducing a process's idle time. We
explored asynchronous I/O in the context of:

1. Single-request devices. We explored two paradigms for implementing
mutual exclusion for this type of device. The first mechanism was very similar
to a semaphore and required locking rules that adhered to the priority ceiling
protocol. This paradigm requires that the client process retain the lock for the
duration of the I/O operation. However, it is possible for the I/O operation to
complete before the client process can reach the point in its execution where it
can release the lock, thus locking out other potential clients longer than is nec-
essary. Emulating multi-request devices represents a paradigm that avoids
this problem.

2. Multi-request devices. One must be aware of the discipline used to queue
multiple requests. FIFO queues in software and in devices can be a serious
bottleneck.

3. Pipelining. This technique further reduces idle time at the cost of introducing
latency into the results. Also, a price paid for reducing idle time using asyn-
chronous paradigms is increased blocking to higher priority process due to in-
terrupts.

We have also explored the notion of incrementally constructing a schedulability model of a
real-time system, where the schedulability model is a mathematical model of the timing and
concurrency structure of the system. A schedulability model can be built incrementally by
considering each process and determining all of the factors that influence its schedulability
and how it influences the schedulability of other processes.

CMU/SEI-90-TR-19 41

There are several areas that were not discussed. We assumed all processes were periodic.
Extending the general model of I/O-related processing to incorporate aperiodic events is
natural. We also feel that the techniques presented in this report are naturally extensible to
t,"e situatioi-, wlhere the pi lu;essing siagt is dispersed throughout a process's execution.

We encourage the reader to apply the presented analysis techniques to problems not ex-
plicitly addressed in this report.

42 CMU/SEI-90-TR-19

Acknowledgements
The authois vould like to express appreciation to the following individuals for their insightful
comments: Mark Borger, Mike Gagliardi, John Goodenough, Keith Kohout, B. Craig
Meyers, Lui Sha and to Lisa Jolly for her assistance in creating figures for the report.

CMU/SEI-90-TR-19 43

CMU, SE .(rn. T P19

I

Appendix A: Implementation Paradigm for
Multi-Request Devices
Multi-request devices, by definition, support multiple outstanding 1/0 requests. Since there
can be multiple outstanding 10 requests, a mechanism ic needed for assoc;ating an .0
completion with the corresponding client process that started the I/O operation. The mecha-
nism used is similar to the mechanism used by a pizza shop. The customer (analogous to
the client process) places his or her order (analogous to making an 1/0 request) and
receives a ticket with a number (analogous to the I/O identification number returned to the
client process), which is called when the pizza is ready. The customer either waits for his or
her number to be called or leaves the pizza shop for a short period of time and then returns
to present his or her number and ask if the pizza is ready.

A procedural interface for this type of I/O paradigm is shown in Figure A-1. When
: e and Asn, :;-i are called to request an I/O operation, they return to the

client an 10 identification number (ID). When '%ai 4:,eda and ::ait Write are called to
wait for completion of an I/O operation, they require use of the I/O ID.

package IO Services is
subtype ID type is range 1..Max IDs:
type BufferType is ...

procedure AsynRead(ID: out ID type);
procedure AsynWrite(ID: out ID type: Buffer: out Buffer-Type);

procedure Wait Read(ID: in ID type; Buffer: in BufferType);
procedure Wait Write(ID: in ID type);

end 10 Services:

Figure A-i: Multi-Request Interface

Figure A-2 illustrates that procedures As,-n - and As . . 'rit are simply procedural
interfaces to the associated entries of the monitor process shown in Figure A-3.

The monitor reserves the l,'O ID through a call to ::serve *c2n :,n _.I and starts the
10 operation in a critical section. Since multi-request devices do not requira mutually ex-
clusive access for the entire duration of an I/O operation, mutual exclusion is provided for
only the start 1/O phase. This is illustrated in Figure A-3.

B-e:>r;eve mo~t4.on ID searches the iO Waiter array shown in Figure A-4 for an ele-
ment that satisfies 1o_0 Waiter (IP) .Reserved = FALSE. The I/O ID is simply an index
into an array of records. There is a one-to-one relationship between tickets in the above
analogy, I/O ID's, and elements in the array of records.

CMU/SEI-90-TR-19 45

procedure AsynRead(ID: out ID type) is
begin

10_Monitor.Read(ID)
end Asyn Read;

procedure AsynWr--te(ID: out ID type is
begin

10_Monitor.Write(ID)

end Asyn Write;

* procedure Wait Read(ID: in ID-type; Buffer: out Buffer-Type)is
* begin

* 10_Waiter(ID).WaitFor_10_Complet±'cn(BufferPointer)
Release_-CompletionID (ID)

* end WaitRead;

I procedure Wait Write(ID: in ID type) is
begin

10_Waiter(:D) Wait_ForICComnpletion(Buffer-Pointer)
ReleaseCompletion_ID (ID)

* end Wait Write;

Figure A-2: Multi-Request Procedural Interface

task IC Monit.or is
begin

loop
select

accopt Read(ID: out ID type)do

Reser-ve Completion_ID(ID)
Start_10_forRead;

end Read;

or

accept Write(ID: out ID -type)do
Reserve -Completion_ID(ID)
Start I0_ForWrite;

end Write;

end select;
end loop;

end ICMonitor;

Figure A-3: Multi-Request Monitor for Requesting 1'0

46 CMU/SEII-90-T1 -9

The I/O ID is then used by Wait Read and Wait Write, as shown in Figure A-2, as a
means to indicate the i/O operation for which it is waiting. An interrupt service routine
shown in Figure A-5 also uses the /0 ID to notify the right client of I/O completion, as shown
in Figure A-4.

Before returning to the client process, Wait React and 'at Write call
Release Ccmplet ioni D to release the identifier for subsequent use. 14

-
4Note that if this paradigm were implemented as part of the executive or runtime system, information such as

process-ID would be readily available, obviating the need to explicitly pass an ID back to the client process.

CMU/SEI-90-TR-19 47

package body 10_Services is

type BufferPointer Type is ...

task type 10 Wait TaskType is
entry 10 complete

(Buffer Pointer: in BufferPointerType);

entry Wait for 10 Completion
(Buffer-Pointer: out BufferPointerType);

end 10WaitTaskType

task body IO Wait_Task_Type is
begin

loop
accept 10_Complete

BufferPointer: in BufferPointerType);

accept Wait For 10_Completion
e Buffer Pointer: out Buffer Pointer Type)do

end loop;

end I OWaitType;

type IOWait_Type is
record

Reserved : BOOLEAN:
IO Wait Task : IOWait TaskType;

end record;

type 10 Wait ArrayType is array(ID type) of IOWaitType;

10_Waiter : IOWaitArray Type;

procedure ReserveCompletionID(ID: out ID type) is
begin

Find a Completion_ID;
10 Waiter(ID) .Reserved := TRUE;

end ReserveCompletion ID;

procedure Release Completion_ID(ID: in ID type) is
begiin

IOWaiter(ID).Reserved := FALSE;
end ReleaseCompletion ID;

-- See Figure A-2 for other procedures.
-- See Figure A-3 for the monitor task.

-- See Figure A-5 for the interrupt service routine.

end IOServices;

Figure A-4: Multi-Request Completion_ID Management

48 CMU/SEI-90-TR-19

ftask body InterruptServiceRoutine is
begin

loop
accept Interrupt do

Determine ID and BufferPointer of completed l1/Q.
end Interrupt;

10_-Waiter(ID).IOComplete(Buffer-Pointer)
end loop;

end InterruptService Routine;

Figure A-5: Interrupt Service Routine

CMU/SEI-90-TR-1 9 49

so CMU/S E I.90TR. 19

Appendix B: Figures for Example Problem

0
____ [T_] O processes

--. S_ --- d
-i data flow

Si-- device

S2 s O--- data store

Figure B-i: Process/Resource Relationships in the Example Problem

d1 d2 d3 d4 d5 s1 S2 S3 S4

'r2 x x

T3 x x x x x

14 x x x

T5 X X X

Table B-i: Process/Resource Relationships in the Example Problem

CMU/SEI-90-TR-19 51

-------------------------------.....~

52 CMU/SEI-90-TR-1 9

References
1. Borger, M. W., Klein, M. H., Veltre, R. A. "Real-Time Software Engineering in Ada: Ob-
servations and Guidelines". Software Engineering Institute Technical Review (1988).

2. Goodenough, J. B., Sha, L. The Priority Ceiling Protocol: A Method for Minimizing the
Blocking of High Priority Ada Tasks. Proceedings of the International Workshop of Real-
Time Ada Issues, June, 1988.

3. Lehoczky, J. P., Sha, L. "Performance of Real-Time Bus Scheduling Algorithms". ACM
Performance Evaluation Review, Special Issue 14, 1 (May, 1986).

4. Lehoczky, J. P., Sha, L., Strosnider, J. Enhancing Aperiodic Responsiveness in A Hard
Real-Time Environment. IEEE Real-Time System Symposium, December, 1987.

5. Liu, C.L., Layland, J.W. "Scheduling Algorithms for Multi-Programming in a Hard-Real-
Time". Journal of the Association for Computing Machinery Vol. 20, 1 (January 1973), pp.
46-61.

6. VMEbus Products: Selector Guide. Motorola, Inc., Tempe, Arizona, 1989.

7. Peterson, James L. and Silberschatz, Abraham. Operating System Concepts. Addison
Wesley, 1986.

8. Rajkumar, R., Sha, L., Lehoczky, L. "On Countering The Effect of Cycle Stealing in A
Hard Real-Time Environment". IEEE Real-Time System Symposium (December 1987).

9. Rajkumar, R., Sha, L., Lehoczky, J.P. Real-Time Synchronization Protocols for Mul-
tipfocessors. IEEE Real-Time Systems Symposium, December, 1988.

10. Sha, L., Rajkumar, R., Lehoczky, J. P. Priority Inheritance Protocols: An Approach to
Real-time Synchronization. Tech. Rept, (CMU-CS-87-181), Department of Computer Sci-
ence, Carnegie Mellon Uniersity, 1987.

11. Sha, L., Goodenough, J. B. Real-Time Scheduling Theory and Ada. Tech. Reot.
CMU/SEI-89-TR-14, ADA211397, Software Engineering Institute, April 1989. Also in
Computer, Vol. 23, No. 4, (April 1990), pp. 53-62,.
12. Sha, L., Rajkumar, R., Lehoczky, J.P., Ramamritham, K. Mode Changes in a Prioritized
Preemptive Scheduling Environment. Tech. Rept. CMU/SEI-88-TR-34, ADA207544, Soft-

ware Engineering Institute, November 1989.

13. Shaw, Mary. "Abstraction Techniques in Modern Programming Languages". IEEE
Software, Vol. 4, (October 1984).

14. Sprunt, B., Sha, L., Lehoczky, J. P. "Aperiodic Task Scheduling for Hard Real-Time
Systems". The Journal of Real-Time Systems Vol. 1 (1989), pp. 27-60.

15. Stankovic, John A. "Misconceptions About Real-Time Computing". Computer Vol. 21,
No. 10 (October 1988), pp. 10-19.

CMU/SEI-90-TR-19 53

54 CMU/SEI-90-TR-19

SECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE

le REPORT SECURITY CLASSIFICATION lb. RESTRICTIVE MARKINGS

UNCLASSIFIED NONE
21 SECURITY CLASSIFICATION AUTHORITY 3. OISTAIBUTION/AVAILABILITY OF REPORT

N/A APPROVED FOR PUBLIC RELEASE
,b. OECLASSIFICATION/OOWNGRAOING SCHEDULE DISTRIBUTION UNLIMITED

N/A

4 PEqFORMING ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUM8ER(S)

CMU/SEI-90-TR-19 ESD-90-TR-220

6a. NAME OF PERFORMING ORGANIZATION GtL OFFICE SYMBOL 7s. NAME OF MONITORING ORGANIZATION
I (It applicablE

SOFTWARE ENGINEERING INST. SEI SEI JOINT PROGRAM OFFICE

6c. ADDRESS (City. State and ZIP Codej 7b. ADDRESS (City. State and ZIP Codej

CARNEGIE-MELLON UNIVERSITY ESD/XRS1
PITTSBURGH, PA 15213 HANSCOM AIR FORCE BASE

RANCOM MA 01711
go. NAME OF FUNDING/SPONSORING 8b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

ORGANIZATION Il[pplicable)

SEI JOINT PROGRAM OFFICE ESD/XRSI F1962890CO003

8c. ADDRESS (City. State and ZIP Code) 10. SOURCE OF FUNDING NOS

CARNEGIE-MELLON UNIVERSITY PROGRAM PROJECT TASK WORK UNI
T

PITTSBURGH, PA 15213 ELEMENT NO. NO. NO. NO

11. TITLE (includ Scu,ity Cl..ficatlon) 3 52F N/A N/A N/A

AN ANALYSIS OF INPUT/OUTPUT PARADIGMS FOR RE L-TIME SYSTEMS
12. PERSONAL AUTHORIS)

Mark H. Klein and Thomas Ralya
13& TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (Yr.. Mo.. Day) 15. PAGE COUNT

FINAT, FROM TO Jul 1990 61 p.

16. SUPPLEMENTARY NOTATION

17. COSATI CODES I& SUBJECT TERMS iCon Inua on reuer e if necetuary and identify by block, number)

FIELD GROUP SUB. OR. deadlines Real-Time
Input/Output Scheduling
Rate monotonic

19 ABSTRACT (Continue on reuerse if necessary and identify by bdloci numberl

The correctness of a real-time system with hard deadline requirements depends both on the
logical correctness and on the timing correctness of the system. The principles of rate
monotonic scheduling have proven to be very useful in providing a framework for designing,
analyzing, and modifying the timing and concurrency aspects of real-time systems. This
paper illustrates how to build a mathematical model of the schedulability of a real-time
system, taking into consideration such factors as preemption, synchronization, non-pre-
emptibility, interrupts, and process idle time. In particular, this paper illustrates
how these principles can be applied to input/output interfaces (e.g., to devices of
local area networks) to predict the timing behavior of various design alternatives.

20. OISTRIBUTION/AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION

UNCLASSIFIED/UNLIMITEO J SAME AS RPT. 0 OTIC USERS 0 UNCLASSIFIED, UNLIMITED DISTRIBUTION

22g. NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE NUMBER 22c. OFFICE SYMBOL

KARL H. SHINGLER tinclude. ra Code)

412 268-7630 SEI JPO
DD FORM 1473,83 APR EDITION OF I JAN 73 IS OBSOLETE.

SECURITY CLASSIFICATION OF THIS PAGE

